login
A283072
Primes of the form x^2 + y^2 such that x^k + y^k is prime for each k = 4, 8, 16, and 32.
1
2, 2823521, 5402681, 6272737, 7641961, 11046193, 11139761, 15785213, 17669153, 20109377, 25855177, 28083953, 37168961, 37681297, 40466033, 41565049, 42025793, 42221269, 42550577, 42911753, 48066173, 52249657, 64377449, 71213257, 76895761, 77051053, 82456481, 85983349, 89197877
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..3900
EXAMPLE
Prime 5 = 2^2 + 1^2 is not a term since 641 divides 2^32 + 1^32.
Prime 7641961 = 2669^2 + 720^2 is a term since 2669^4 + 720^4, 2669^8 + 720^8, 2669^16 + 720^16, and 2669^32 + 720^32 are prime numbers.
PROG
(PARI) list(lim)=my(v=List([2]), t); for(a=1, sqrt(lim), forstep(b=1+a%2, min(a, sqrt(lim-a^2)), 2, if(isprime(t=a^2+b^2) && isprime(a^4+b^4) && isprime(a^8+b^8) && isprime(a^16+b^16) && isprime(a^32+b^32), listput(v, t)))); vecsort(Vec(v)) \\ after Charles R Greathouse IV at A182313
CROSSREFS
Subsequence of A182313.
Sequence in context: A303255 A322096 A037051 * A214599 A071066 A337368
KEYWORD
nonn
AUTHOR
Altug Alkan and Thomas Ordowski, Feb 28 2017
STATUS
approved