%I #13 Dec 17 2017 03:15:31
%S 69,181,1052,6457,6460,6466,40083,100362,251707,251722,251736,251741,
%T 637236,637322,637326,637333,4124458,4124467,4124587,10553439,
%U 10553444,10553454,10553478,10553502,10553505,10553547,10553568,10553573,10553575,10553818,10553827
%N Numbers n such that A068902(n+1) <= A068902(n).
%C Numbers n for which n*floor(ceiling(prime(n+1)/(n+1))*(1+1/n)) < prime(n).
%e For n=1, A068902(69) = 414 <= A068902(70) = 350.
%t Flatten@ Position[Differences@ Table[n Ceiling[Prime@ n/n], {n, 10^7}], k_ /; k <= 0] (* _Michael De Vlieger_, Feb 27 2017 *)
%o (MATLAB)
%o P = primes(10^8);
%o N = numel(P);
%o R = [1:N] .* ceil(P ./ [1:N]);
%o Rd = R(2:end) - R(1:end-1);
%o find(Rd <= 0)
%Y Cf. A068902.
%K nonn
%O 1,1
%A _Robert Israel_, Feb 27 2017
%E More terms from _Michael De Vlieger_, Feb 27 2017