login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282932 Expansion of Product_{k>=1} (1 - x^(7*k))^56/(1 - x^k)^57 in powers of x. 2
1, 57, 1710, 35815, 586815, 7997157, 94175267, 983458849, 9279004863, 80218101555, 642408637594, 4807304399931, 33855173217278, 225702273908048, 1431470152072364, 8673471170235715, 50389686887219910, 281575909008910196, 1517580284619183809 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, if m >= 1 and g.f. = Product_{k>=1} (1 - x^(7*k))^m / (1 - x^k)^(m+1), then a(n) ~ exp(Pi*sqrt((2*(6*m+7)*n)/21)) * sqrt(6*m+7)) / (4*sqrt(3) * 7^((m+1)/2) * n). - Vaclav Kotesovec, Nov 10 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: Product_{n>=1} (1 - x^(7*n))^56/(1 - x^n)^57.

a(n) ~ exp(Pi*sqrt(686*n/21)) * sqrt(343) / (4*sqrt(3) * 7^(57/2) * n). - Vaclav Kotesovec, Nov 10 2017

MATHEMATICA

nmax = 20; CoefficientList[Series[Product[(1 - x^(7*k))^56/(1 - x^k)^57, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

PROG

(PARI) x='x+O('x^30); Vec(prod(j=1, 5, (1 - x^(7*j))^56/(1 - x^j)^57)) \\ G. C. Greubel, Nov 18 2018

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^56/(1 - x^j)^57: j in [1..5]]) )); // G. C. Greubel, Nov 18 2018

(Sage) s=(prod((1 - x^(7*j))^56/(1 - x^j)^57 for j in (1..5))).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 18 2018

CROSSREFS

Cf. A282919.

Sequence in context: A017773 A017720 A009702 * A228259 A229407 A270502

Adjacent sequences:  A282929 A282930 A282931 * A282933 A282934 A282935

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Feb 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 20:17 EST 2019. Contains 320328 sequences. (Running on oeis4.)