login
A282926
Expansion of Product_{k>=1} (1 - x^(7*k))^32/(1 - x^k)^33 in powers of x.
2
1, 33, 594, 7667, 79101, 691119, 5299019, 36518791, 230122266, 1343028082, 7331536586, 37731144564, 184232285897, 857974579385, 3827695162667, 16420097827188, 67948512704413, 271990545250303, 1055719283332541, 3981884465793740, 14621550982740229
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1 - x^(7*n))^32/(1 - x^n)^33.
a(n) ~ exp(Pi*sqrt(398*n/21)) * sqrt(199) / (4*sqrt(3) * 7^(33/2) * n). - Vaclav Kotesovec, Nov 10 2017
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^32/(1 - x^k)^33, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
PROG
(PARI) my(m=30, x='x+O('x^m)); Vec(prod(j=1, m, (1 - x^(7*j))^32/(1 - x^j)^33)) \\ G. C. Greubel, Nov 18 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^32/(1 - x^j)^33: j in [1..m]]) )); // G. C. Greubel, Nov 18 2018
(Sage)
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^32/(1 - x^j)^33 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
CROSSREFS
Cf. A282919.
Sequence in context: A010985 A228256 A197361 * A172362 A080597 A076684
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 24 2017
STATUS
approved