login
A282917
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 529", based on the 5-celled von Neumann neighborhood.
4
1, 0, 1, 0, 7, 1, 28, 1, 124, 17, 452, 17, 1988, 273, 7236, 273, 31812, 4369, 115780, 4369, 508996, 69905, 1852484, 69905, 8143940, 1118481, 29639748, 1118481, 130303044, 17895697, 474235972, 17895697, 2084848708, 286331153, 7587775556, 286331153
OFFSET
0,5
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Feb 25 2017: (Start)
a(n) = a(n-2) + 16*a(n-4) - 16*a(n-6) for n>6.
G.f.: (1 - 10*x^4 + x^5 + 21*x^6 - 8*x^10) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 + 4*x^2)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 529; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Feb 24 2017
STATUS
approved