login
Numerator of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.
4

%I #34 Dec 28 2018 11:35:30

%S 1,7,31,127,511,1414477,8191,118518239,5749691557,91546277357,

%T 23273283019,1982765468311237,22076500342261,455371239541065869,

%U 925118910976041358111,16555640865486520478399,1302480594081611886641,904185845619475242495834469891

%N Numerator of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.

%C See "RiemannSiegelTheta" in the help file of Mathematica, Series expansion at infinity.

%H Seiichi Manyama, <a href="/A282898/b282898.txt">Table of n, a(n) for n = 1..275</a>

%H Richard P. Brent, <a href="https://arxiv.org/abs/1609.03682">On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions</a>, arXiv:1609.03682 [math.NA], 2016.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Riemann-SiegelFunctions.html">Riemann-Siegel Functions</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function">Riemann-Siegel theta function</a>

%H Wolfram Language and System, <a href="http://reference.wolfram.com/language/ref/RiemannSiegelTheta.html">RiemannSiegelTheta</a>

%t Numerator[ DeleteCases[ CoefficientList[ CoefficientList[ Series[ RiemannSiegelTheta[ t], {t, Infinity, 41}], 1/t^_] + Pi/8 + t/2 + t*Log[2]/2 + t*Log[Pi]/2 + t*Log[1/t]/2, 1/t][[1]], 0]]

%Y Cf. A114721, A282899.

%Y Differs from A036282.

%K nonn,frac

%O 1,2

%A _Mats Granvik_ and _Robert G. Wilson v_, Feb 24 2017