login
A282862
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors.
8
2, 4, 4, 7, 11, 7, 13, 31, 31, 13, 24, 89, 131, 89, 24, 44, 251, 583, 583, 251, 44, 81, 715, 2562, 4163, 2562, 715, 81, 149, 2028, 11250, 28537, 28537, 11250, 2028, 149, 274, 5761, 49471, 197892, 305430, 197892, 49471, 5761, 274, 504, 16358, 217459, 1369929
OFFSET
1,1
COMMENTS
Table starts
...2.....4.......7........13..........24............44..............81
...4....11......31........89.........251...........715............2028
...7....31.....131.......583........2562.........11250...........49471
..13....89.....583......4163.......28537........197892.........1369929
..24...251....2562.....28537......305430.......3303160........35681883
..44...715...11250....197892.....3303160......55930891.......945547378
..81..2028...49471...1369929....35681883.....945547378.....25000646212
.149..5761..217459...9480913...385325426...15974465522....660597156170
.274.16358..955873..65635874..4161954773..270001575386..17464365749979
.504.46452.4201865.454328733.44951001482.4562926495008.461623512113494
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = a(n-1) +4*a(n-2) +3*a(n-3) +a(n-4) +a(n-5)
k=3: [order 11]
k=4: [order 21]
k=5: [order 43]
k=6: [order 85]
EXAMPLE
Some solutions for n=4 k=4
..1..1..0..0. .0..0..1..1. .1..0..0..0. .0..1..0..1. .0..0..0..1
..0..0..1..1. .0..0..0..0. .0..1..0..1. .0..0..1..0. .1..0..0..0
..1..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0. .1..0..0..1
..0..1..1..0. .0..0..1..0. .1..0..0..0. .1..0..0..0. .0..0..1..0
CROSSREFS
Column 1 is A000073(n+3).
Sequence in context: A268781 A282647 A269089 * A296578 A268750 A282996
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 23 2017
STATUS
approved