This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282818 Number of inequivalent ways to color the edges of a tetrahedron using at most n colors so that no two adjacent edges have the same color. 2
 0, 0, 0, 2, 20, 110, 460, 1540, 4312, 10500, 22920, 45870, 85580, 150722, 252980, 407680, 634480, 958120, 1409232, 2025210, 2851140, 3940790, 5357660, 7176092, 9482440, 12376300, 15971800, 20398950, 25805052, 32356170, 40238660, 49660760, 60854240, 74076112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1) FORMULA a(n) = n*(n-1)*(n-2)*(n^3-9*n^2+32*n-38)/12. G.f.: -2*x^3*(1+3*x+6*x^2+20*x^3)/(x-1)^7 . - R. J. Mathar, Feb 23 2017 a(n) = 2*A249460(n). - R. J. Mathar, Feb 23 2017 EXAMPLE For n = 3 we get a(3) = 2 distinct ways to color the edges of a tetrahedron with three colors so that no two adjacent edges have the same color. MATHEMATICA Table[n (n - 1) (n - 2) (n^3 - 9 n^2 + 32 n - 38)/12, {n, 0, 34}] PROG (PARI) a(n) = n*(n-1)*(n-2)*(n^3-9*n^2+32*n-38)/12 \\ Charles R Greathouse IV, Feb 22 2017 CROSSREFS Cf. A282819, A282820, A046023 (tetrahedral edge colorings without restriction). Sequence in context: A028477 A073077 A069537 * A001797 A084894 A203238 Adjacent sequences:  A282815 A282816 A282817 * A282819 A282820 A282821 KEYWORD nonn,easy AUTHOR David Nacin, Feb 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 06:26 EDT 2019. Contains 324347 sequences. (Running on oeis4.)