login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282801 Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 507", based on the 5-celled von Neumann neighborhood. 4

%I

%S 1,10,111,10,11111,1010,1111111,101010,111111111,10101010,11111111111,

%T 1010101010,1111111111111,101010101010,111111111111111,10101010101010,

%U 11111111111111111,1010101010101010,1111111111111111111,101010101010101010,111111111111111111111

%N Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 507", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A282801/b282801.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A282801/a282801.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Feb 22 2017: (Start)

%F a(n) = (10^(n+1) - 1) / 9 for n>1 and even.

%F a(n) = (10^n - 10) / 99 for n>1 and odd.

%F a(n) = 101*a(n-2) - 100*a(n-4) for n>3.

%F G.f.: (1 + 10*x + 10*x^2 - 1000*x^3 + 1000*x^5) / ((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).

%F (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 507; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

%Y Cf. A282800, A282802, A282803.

%K nonn,easy

%O 0,2

%A _Robert Price_, Feb 21 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 01:42 EST 2019. Contains 329850 sequences. (Running on oeis4.)