login
A282791
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
8
0, 0, 0, 1, 0, 1, 2, 8, 8, 2, 5, 16, 73, 16, 5, 12, 72, 318, 318, 72, 12, 26, 240, 1747, 1952, 1747, 240, 26, 56, 736, 8216, 16584, 16584, 8216, 736, 56, 118, 2352, 38027, 119176, 208559, 119176, 38027, 2352, 118, 244, 7128, 173722, 832218, 2207352, 2207352
OFFSET
1,7
COMMENTS
Table starts
...0.....0.......1.........2...........5............12..............26
...0.....0.......8........16..........72...........240.............736
...1.....8......73.......318........1747..........8216...........38027
...2....16.....318......1952.......16584........119176..........832218
...5....72....1747.....16584......208559.......2207352........22998587
..12...240....8216....119176.....2207352......34974844.......545174028
..26...736...38027....832218....22998587.....545174028.....12713143876
..56..2352..173722...5780340...236744562....8385651160....292288389872
.118..7128..773529..39020884..2372235577..125782952202...6555156469894
.244.21424.3412416.260919192.23556868268.1869100531456.145619095090322
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=2: a(n) = 2*a(n-1) +5*a(n-2) +2*a(n-3) -17*a(n-4) -24*a(n-5) -16*a(n-6)
k=3: [order 12]
k=4: [order 18]
k=5: [order 42]
k=6: [order 60]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..0. .0..1..0..1. .0..1..0..0. .0..0..1..1. .1..0..1..0
..1..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..0. .0..0..1..0
..0..1..0..0. .1..0..0..0. .0..0..1..0. .0..0..0..1. .0..0..0..0
..0..0..0..0. .1..0..1..0. .1..0..0..1. .0..1..0..0. .1..1..1..0
CROSSREFS
Column 1 is A073778(n-1).
Sequence in context: A196775 A021351 A011061 * A242168 A011288 A198234
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 21 2017
STATUS
approved