%I #4 Feb 21 2017 08:42:22
%S 5,72,1747,16584,208559,2207352,22998587,236744562,2372235577,
%T 23556868268,231170201002,2248366154372,21712536566614,
%U 208339762352392,1988486114090520,18890627682669588,178728457004534603
%N Number of nX5 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
%C Column 5 of A282791.
%H R. H. Hardin, <a href="/A282788/b282788.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n-1) +46*a(n-2) +6*a(n-3) -2183*a(n-4) -7382*a(n-5) -11643*a(n-6) +54132*a(n-7) +102965*a(n-8) +292502*a(n-9) -793634*a(n-10) +465944*a(n-11) -5549560*a(n-12) +11071058*a(n-13) -20451847*a(n-14) +66051624*a(n-15) -119880393*a(n-16) +200181288*a(n-17) -351381924*a(n-18) +424696584*a(n-19) -467540195*a(n-20) +542912638*a(n-21) -445397634*a(n-22) +369091666*a(n-23) -353980998*a(n-24) +201536626*a(n-25) -145556750*a(n-26) +127195728*a(n-27) -40377766*a(n-28) +34252470*a(n-29) -28331987*a(n-30) +3136852*a(n-31) -5045600*a(n-32) +3837652*a(n-33) -360550*a(n-34) +205482*a(n-35) -439128*a(n-36) +4656*a(n-37) -5817*a(n-38) +21150*a(n-39) -3141*a(n-40) -1260*a(n-41) -900*a(n-42)
%e Some solutions for n=4
%e ..0..0..0..0..1. .0..0..0..0..0. .0..1..0..0..0. .0..0..0..0..0
%e ..0..1..1..0..1. .1..0..0..1..0. .0..1..0..0..0. .0..0..1..0..0
%e ..0..0..0..0..0. .0..0..0..0..1. .0..0..1..0..0. .0..0..0..1..0
%e ..1..0..1..1..1. .1..0..0..1..0. .0..0..0..0..0. .1..0..0..0..1
%Y Cf. A282791.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 21 2017