login
A282734
Number of triangulations of a convex 5-gon in the plane each of whose sides is subdivided by n points.
1
5, 250, 13740, 699310, 33138675, 1484701075, 63681535780, 2639190848280, 106403568809545, 4194330516135610, 162275686298727710, 6180361117463387590, 232249233257266145145, 8627435520542763854065, 317285140062014506979360, 11566298576075812803892160
OFFSET
0,1
LINKS
Andrei Asinowski, Christian Krattenthaler, Toufik Mansour, Counting triangulations of some classes of subdivided convex polygons, arXiv:1604.02870 [math.CO], 2016.
FORMULA
From Asinowski and Krattenthaler equation 2.7: a(n) = tr(5,n+1). - Lars Blomberg, Mar 04 2017
MATHEMATICA
tr[k_, r_] := Sum[(-1)^j 2^l Binomial[k, j] Binomial[k-2+l, l] Binomial[ (r-1)k-l-3, r k - (r+1)j-l-2], {j, 0, k}, {l, 0, r k - (r+1)j - 2}];
a[n_] := tr[5, n+1];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 10 2018 *)
CROSSREFS
Sequence in context: A068727 A135095 A219872 * A115739 A142202 A042219
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 03 2017
EXTENSIONS
More terms from Lars Blomberg, Mar 04 2017
STATUS
approved