

A282672


Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^6.


7



1, 1138842118714300, 1605078397568386, 1785922862964240, 1878157384495600, 2020105305316098, 2055406015517400, 2071857393746595, 2310442996851990, 2450253379658700, 2513216312053944, 2966830431558840, 2990886595291870, 3228082757486928, 3318987930069240
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Also numbers k such that the kth Catalan number C(2*k,k)/(k+1) is divisible by k^6.


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..97
Kevin Ford, Sergei Konyagin, Divisibility of the central binomial coefficient binomial(2n, n), arXiv:1909.03903 [math.NT], 2019.


EXAMPLE

Let E(n,p) be the exponent of the prime p in the factorization of n. Note that E(n!,p) can be easily found with Legendre's formula without computing n!. Then, t = 1138842118714300 is in the sequence because for each prime p dividing t we have E(C(2*t,t),p) = E((2*t)!,p)  2*E(t!,p) >= 6*E(t,p).


CROSSREFS

Cf. A000108, A000984, A014847, A121943, A282163, A282346, A283073, A283074.
Sequence in context: A172607 A235167 A095431 * A072719 A185433 A134692
Adjacent sequences: A282669 A282670 A282671 * A282673 A282674 A282675


KEYWORD

nonn


AUTHOR

Giovanni Resta, Mar 16 2017


STATUS

approved



