The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282614 Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to vertical and horizontal reflections. 11
 0, 1, 168, 5346, 67840, 496875, 2544696, 10151428, 33693696, 97135605, 250525000, 590412966, 1291500288, 2653631071, 5169160920, 9616725000, 17188519936, 29659392873, 49607301096, 80696066410, 128032800000, 198613915731, 301875282808, 450363792396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Cycle index of symmetry group is (2*s(2)^3*s(1)^3 + s(2)^4*s(1) + s(1)^9)/4. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1). FORMULA a(n) = n^5*(n+1)*(n^3-n^2+n+1)/4. G.f.: x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10. - Colin Barker, Feb 23 2017 EXAMPLE The number of 3 X 3 binary matrices up to vertical and horizontal reflections is 168. MATHEMATICA Table[(2n+1+n^4)n^5/4, {n, 0, 24}] PROG (PARI) concat(0, Vec(x*(1 + 158*x + 3711*x^2 + 21820*x^3 + 39095*x^4 + 22254*x^5 + 3577*x^6 + 104*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017 CROSSREFS Cf. A282613, A282614, A217331, A168555. (For 2x2 version see A039623.) Sequence in context: A331908 A231995 A223243 * A003807 A011785 A227433 Adjacent sequences:  A282611 A282612 A282613 * A282615 A282616 A282617 KEYWORD nonn,easy AUTHOR David Nacin, Feb 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 15:32 EST 2020. Contains 331998 sequences. (Running on oeis4.)