login
Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).
3

%I #19 Aug 08 2022 21:27:43

%S 1,1,2,5,3,15,28,6,52,210,190,10,203,1506,3360,1340,15,877,10871,

%T 48321,60270,9065,21,4140,80592,636300,1820056,1132880,57512,28,21147,

%U 618939,8081928,45455676,76834926,21067452,344316,36,115975,4942070,101684115,1027544400,3860929170,3406410252,377190240,1966440,45

%N Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).

%H Alois P. Heinz, <a href="/A282575/b282575.txt">Rows n = 0..100, flattened</a>

%H T. Hearne and C. G. Wagner, <a href="http://dx.doi.org/10.1016/0012-365X(73)90141-6">Minimal covers of finite sets</a>, Discr. Math. 5 (1973), 247-251.

%F E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).

%e Triangle T(n,k) begins:

%e : 1;

%e : 1;

%e : 2;

%e : 5, 3;

%e : 15, 28, 6;

%e : 52, 210, 190, 10;

%e : 203, 1506, 3360, 1340, 15;

%e : 877, 10871, 48321, 60270, 9065, 21;

%e : 4140, 80592, 636300, 1820056, 1132880, 57512, 28;

%p T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k):

%p seq(seq(T(n,k), k=0..max(0,n-2)), n=0..12); # _Alois P. Heinz_, Feb 18 2017

%t nn = 8; Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0,nn}], {x, 0, nn}], {x, y}]], 1] // Grid

%Y Cf. A035348. Row sums A046165. Column k=0 A000110. Column k=1 A003466.

%Y Mirrored triangle gives A035347.

%K nonn,tabf

%O 0,3

%A _Geoffrey Critzer_, Feb 18 2017