login
Number of nX5 0..1 arrays with no 1 equal to more than two of its king-move neighbors, with the exception of exactly one element.
1

%I #4 Feb 18 2017 08:39:18

%S 0,154,4167,73140,1381258,23705784,395048648,6468244262,103806368796,

%T 1645203138692,25796898619101,400912208249576,6185416660095549,

%U 94837083776644692,1446320062015451586,21955097844093324020

%N Number of nX5 0..1 arrays with no 1 equal to more than two of its king-move neighbors, with the exception of exactly one element.

%C Column 5 of A282560.

%H R. H. Hardin, <a href="/A282557/b282557.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A282557/a282557.txt">Empirical recurrence of order 62</a>

%F Empirical recurrence of order 62 (see link above)

%e Some solutions for n=4

%e ..0..1..0..0..0. .1..1..0..0..0. .0..1..0..0..0. .0..1..0..0..0

%e ..1..1..0..1..1. .1..0..0..0..0. .0..1..0..1..1. .0..0..0..1..0

%e ..0..0..0..1..0. .0..1..0..1..0. .0..0..1..0..0. .1..0..0..1..0

%e ..0..0..0..1..0. .0..0..0..0..0. .1..1..0..0..0. .1..0..1..0..1

%Y Cf. A282560.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 18 2017