login
A282528
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its king-move neighbors.
8
2, 4, 4, 8, 15, 8, 16, 43, 43, 16, 32, 144, 206, 144, 32, 64, 473, 1097, 1097, 473, 64, 128, 1529, 5675, 10041, 5675, 1529, 128, 256, 5004, 29433, 86258, 86258, 29433, 5004, 256, 512, 16335, 153037, 747184, 1207312, 747184, 153037, 16335, 512, 1024, 53283
OFFSET
1,1
COMMENTS
Table starts
....2......4........8.........16...........32..............64...............128
....4.....15.......43........144..........473............1529..............5004
....8.....43......206.......1097.........5675...........29433............153037
...16....144.....1097......10041........86258..........747184...........6509805
...32....473.....5675......86258......1207312........17100576.........243903065
...64...1529....29433.....747184.....17100576.......398640091........9355397095
..128...5004...153037....6509805....243903065......9355397095......361721564040
..256..16335...794716...56491269...3461268322....218250094269....13881707109180
..512..53283..4128244..490864610..49204976763...5103468618577...534350790960907
.1024.173960.21444844.4264923086.699393940820.119296756793024.20559180796734866
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -8*a(n-4)
k=3: a(n) = 5*a(n-1) +2*a(n-2) -a(n-3) -24*a(n-4) +13*a(n-5) -2*a(n-7) +6*a(n-8)
k=4: [order 14]
k=5: [order 31]
k=6: [order 68]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .1..0..0..0. .0..0..0..0. .0..1..0..1. .1..1..0..1
..1..1..0..1. .1..1..0..0. .0..1..1..1. .0..0..0..1. .0..0..0..0
..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0
..1..0..1..1. .1..1..1..0. .0..0..0..1. .0..0..0..1. .0..1..1..1
CROSSREFS
Column 1 is A000079.
Sequence in context: A216950 A240364 A225982 * A297094 A283282 A181253
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 17 2017
STATUS
approved