OFFSET
0,5
COMMENTS
Number of compositions (ordered partitions) into сentered triangular numbers (A005448).
Conjecture: every number > 1 is the sum of at most 5 сentered triangular numbers.
LINKS
FORMULA
G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).
a(n) ~ c / r^n, where r = 0.71061790420456638132596657780064392952867377958... is the root of the equation r^(5/8)*EllipticTheta(2, 0, r^(3/2)) = 2 and c = 0.478786567198436133936216342628844283927491282611910379922933700360643... . - Vaclav Kotesovec, Feb 17 2017
EXAMPLE
a(7) = 5 because we have [4, 1, 1, 1], [1, 4, 1, 1], [1, 1, 4, 1], [1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 16 2017
STATUS
approved