login
A282497
'Somos expansion' of e: e=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=e.
1
2, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1
OFFSET
0,1
COMMENTS
1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1<x/floor(x)<2.
LINKS
FORMULA
Product_{k>=0} a(k)^(1/2^k) = e.
EXAMPLE
Integer part of e is 2. Integer part of e^2/4 is 1.
MATHEMATICA
$MaxExtraPrecision = 1000;
x0 = E;
Nm = 130;
j = 1;
Res = Table[1, {j, 1, Nm}];
While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];
j++];
CROSSREFS
Cf. A001113 (digits).
Sequence in context: A226006 A210943 A260870 * A087157 A351094 A351092
KEYWORD
nonn
AUTHOR
Yuriy Sibirmovsky, Feb 16 2017
STATUS
approved