login
A282459
Number of composite numbers of the form 2*n - 2^k + 1 (k > 0, 2^k < 2*n + 1).
1
0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 3, 2, 1, 2, 3, 1, 4, 3, 0, 3, 2, 2, 4, 2, 3, 4, 2, 1, 4, 4, 1, 4, 4, 0, 3, 4, 3, 3, 4, 2, 5, 3, 3, 4, 5, 3, 4, 4, 0, 4, 4, 1, 4, 3, 2, 5, 4, 4, 4, 6, 3, 4, 4, 2, 6, 3, 3, 4, 4, 3, 7, 5, 3, 5, 5, 3, 5, 6, 2, 4, 4, 2, 5, 4, 5, 6, 3, 3, 6, 5, 3, 6, 6, 1, 5, 3, 2, 5, 5, 4, 6, 5, 3, 4, 6
OFFSET
0,9
COMMENTS
It is conjectured that a(n) > 0 for all n > 52. See related conjecture and findings in A039669. Also see the graph of this sequence.
EXAMPLE
a(7) = 0 because 2*7 + 1 - 2^1 = 13, 2*7 + 1 - 2^2 = 11, 2*7 + 1 - 2^3 = 7 are prime numbers.
PROG
(PARI) isA002808(n) = n>1 && !isprime(n);
a(n) = sum(k=1, log(2*n+1)\log(2), isA002808(2*n+1-2^k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Feb 15 2017
STATUS
approved