login
Coefficients in q-expansion of E_2^5, where E_2 is the Eisenstein series A006352.
4

%I #12 Feb 27 2018 04:58:18

%S 1,-120,5400,-104160,511800,6770736,-19504800,-452207040,-2959622280,

%T -12932941080,-44497080432,-129918587040,-335811977760,-788655411600,

%U -1714912983360,-3498061536576,-6761506680840,-12481939678320,-22138262633160,-37922739116640

%N Coefficients in q-expansion of E_2^5, where E_2 is the Eisenstein series A006352.

%H Seiichi Manyama, <a href="/A282431/b282431.txt">Table of n, a(n) for n = 0..1000</a>

%t terms = 20;

%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];

%t E2[x]^5 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)

%Y Cf. this sequence (E_2^5), A282015 (E_4^5), A282433 (E_6^5).

%Y Cf. A006352 (E_2), A281374 (E_2^2), A282018 (E_2^3), A282210 (E_2^4), this sequence (E_2^5).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 15 2017