OFFSET
1,1
COMMENTS
EXAMPLE
a(10) = 0. Proof: Suppose 10 is a term of A282026. For the corresponding n, 2*n + 1 cannot be divisible by 5 because of A282026’s definition (gcd(10, 2*n + 1) = 1). So 2*n + 1 can be only of the form 10*k + 1, 10*k + 3, 10*k + 7, 10*k + 9. But 10*k + 1 + 2*2, 10*k + 3 + 2*1, 10*k + 7 + 2*4, 10*k + 9 + 2*8 are all composite and 1, 2, 4, 8 are relatively prime to any odd number. Since all of them are smaller than 10, this is the contradiction to the assumption that 10 is the term which is the smallest number for corresponding n. This also proves that a(5*k) = 0 for any k > 1.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
STATUS
approved