%I #13 Feb 27 2018 02:58:22
%S 1,-48,-392688,-67089216,37279185936,15066490704480,2098369148842944,
%T 134803101024250752,4960096515113176080,119289357755096403984,
%U 2051412780505054295520,26894040676649639982144,281804014682888704101312
%N Coefficients in q-expansion of E_4^4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
%H Seiichi Manyama, <a href="/A282403/b282403.txt">Table of n, a(n) for n = 0..1000</a>
%t terms = 13;
%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t E4[x]^4* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), this sequence (E_4^4*E_6^2).
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 14 2017