login
Coefficients in q-expansion of E_4^7, where E_4 is the Eisenstein series A004009.
3

%I #13 Feb 27 2018 02:58:16

%S 1,1680,1224720,505659840,129351117840,21060890131680,

%T 2160822606183360,134717272385473920,4957295423282269200,

%U 119288258695393463760,2051465861242156554720,26894077218337493424960,281803532524538902825920

%N Coefficients in q-expansion of E_4^7, where E_4 is the Eisenstein series A004009.

%H Seiichi Manyama, <a href="/A282402/b282402.txt">Table of n, a(n) for n = 0..1000</a>

%t terms = 13;

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

%t E4[x]^7 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)

%Y Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), A282012 (E_4^4), A282015 (E_4^5), A282330 (E_4^6), this sequence (E_4^7).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 14 2017