login
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its king-move neighbors.
8

%I #4 Feb 14 2017 07:57:10

%S 2,4,4,8,16,8,16,57,57,16,32,213,324,213,32,64,796,2048,2048,796,64,

%T 128,2964,12771,23773,12771,2964,128,256,11049,79266,266425,266425,

%U 79266,11049,256,512,41193,493671,2966724,5297294,2966724,493671,41193,512

%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its king-move neighbors.

%C Table starts

%C ...2......4........8.........16...........32..............64...............128

%C ...4.....16.......57........213..........796............2964.............11049

%C ...8.....57......324.......2048........12771...........79266............493671

%C ..16....213.....2048......23773.......266425.........2966724..........33295509

%C ..32....796....12771.....266425......5297294.......104126212........2073090293

%C ..64...2964....79266....2966724....104126212......3599858930......126635741170

%C .128..11049...493671...33295509...2073090293....126635741170.....7910979963313

%C .256..41193..3072417..372745151..41113855962...4430221392726...490628902023166

%C .512.153556.19120172.4173376213.815396431544.155002258286662.30431979525697236

%H R. H. Hardin, <a href="/A282399/b282399.txt">Table of n, a(n) for n = 1..264</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1)

%F k=2: a(n) = 3*a(n-1) +a(n-2) +7*a(n-3) -2*a(n-4) -4*a(n-6)

%F k=3: [order 9]

%F k=4: [order 17]

%F k=5: [order 44]

%e Some solutions for n=4 k=4

%e ..0..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..0..1. .1..0..0..0

%e ..0..0..0..0. .1..0..0..0. .0..1..0..1. .1..1..0..0. .0..0..1..0

%e ..0..0..0..1. .0..0..0..1. .1..0..0..0. .0..1..0..0. .0..1..0..0

%e ..0..1..0..0. .0..0..1..0. .0..0..0..1. .0..0..1..0. .0..0..0..1

%Y Column 1 is A000079.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 14 2017