login
A282380
Number of ways to write n as a sum of two unordered nonsquarefree numbers.
1
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 3, 1, 1, 1, 3, 2, 1, 1, 4, 2, 2, 1, 6, 2, 1, 1, 5, 2, 1, 2, 5, 3, 1, 1, 6, 3, 2, 1, 7, 4, 4, 1, 7, 4, 4, 2, 7, 4, 3, 3, 8, 4, 3, 3, 9, 4, 4, 2, 12, 4, 4, 3, 10, 5, 3, 4, 10, 6, 3, 3, 11, 5, 3, 3, 12, 5, 6, 3, 11, 6, 5, 4, 12, 5, 5, 7, 14, 5, 6, 5, 14, 5, 6
OFFSET
1,16
EXAMPLE
a(16) = 2 because 16 = 4 + 12 and 16 = 8 + 8 are only corresponding solutions.
PROG
(PARI) a(n) = sum(k=1, n\2, !issquarefree(k) && !issquarefree(n-k));
CROSSREFS
Sequence in context: A219052 A060826 A078134 * A083661 A029369 A255315
KEYWORD
nonn
AUTHOR
Altug Alkan, Feb 13 2017
STATUS
approved