%I #4 Feb 13 2017 11:10:58
%S 0,0,0,0,0,0,0,1,1,0,0,6,20,6,0,0,33,309,309,33,0,0,168,3499,6244,
%T 3499,168,0,0,810,33692,119390,119390,33692,810,0,0,3780,309493,
%U 2131096,4342782,2131096,309493,3780,0,0,17226,2721044,36258678,145363115
%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than four of its king-move neighbors, with the exception of exactly two elements.
%C Table starts
%C .0.....0........0..........0.............0................0..................0
%C .0.....0........1..........6............33..............168................810
%C .0.....1.......20........309..........3499............33692.............309493
%C .0.....6......309.......6244........119390..........2131096...........36258678
%C .0....33.....3499.....119390.......4342782........145363115.........4628356166
%C .0...168....33692....2131096.....145363115.......9186748436.......549965063215
%C .0...810...309493...36258678....4628356166.....549965063215.....61758065925680
%C .0..3780..2721044..594236950..142749216527...31917429718270...6732856863189737
%C .0.17226.23193721.9502175342.4294477337728.1806509121927104.715938968398655928
%H R. H. Hardin, <a href="/A282377/b282377.txt">Table of n, a(n) for n = 1..144</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 6*a(n-1) -3*a(n-2) -12*a(n-3) -27*a(n-4) -18*a(n-5) -9*a(n-6)
%F k=3: [order 30]
%F k=4: [order 54]
%e Some solutions for n=4 k=4
%e ..0..0..1..0. .0..0..0..0. .0..0..0..0. .1..1..0..1. .0..0..0..0
%e ..1..0..1..1. .0..0..0..0. .1..0..1..1. .1..0..1..1. .0..1..1..0
%e ..0..0..1..1. .1..1..1..1. .1..0..1..1. .0..1..0..1. .0..1..1..0
%e ..0..0..1..1. .1..1..1..0. .0..1..1..1. .1..1..1..0. .0..1..1..1
%K nonn,tabl
%O 1,12
%A _R. H. Hardin_, Feb 13 2017