login
A282377
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than four of its king-move neighbors, with the exception of exactly two elements.
7
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 6, 20, 6, 0, 0, 33, 309, 309, 33, 0, 0, 168, 3499, 6244, 3499, 168, 0, 0, 810, 33692, 119390, 119390, 33692, 810, 0, 0, 3780, 309493, 2131096, 4342782, 2131096, 309493, 3780, 0, 0, 17226, 2721044, 36258678, 145363115
OFFSET
1,12
COMMENTS
Table starts
.0.....0........0..........0.............0................0..................0
.0.....0........1..........6............33..............168................810
.0.....1.......20........309..........3499............33692.............309493
.0.....6......309.......6244........119390..........2131096...........36258678
.0....33.....3499.....119390.......4342782........145363115.........4628356166
.0...168....33692....2131096.....145363115.......9186748436.......549965063215
.0...810...309493...36258678....4628356166.....549965063215.....61758065925680
.0..3780..2721044..594236950..142749216527...31917429718270...6732856863189737
.0.17226.23193721.9502175342.4294477337728.1806509121927104.715938968398655928
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -3*a(n-2) -12*a(n-3) -27*a(n-4) -18*a(n-5) -9*a(n-6)
k=3: [order 30]
k=4: [order 54]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0. .0..0..0..0. .0..0..0..0. .1..1..0..1. .0..0..0..0
..1..0..1..1. .0..0..0..0. .1..0..1..1. .1..0..1..1. .0..1..1..0
..0..0..1..1. .1..1..1..1. .1..0..1..1. .0..1..0..1. .0..1..1..0
..0..0..1..1. .1..1..1..0. .0..1..1..1. .1..1..1..0. .0..1..1..1
CROSSREFS
Sequence in context: A176559 A241715 A224919 * A281936 A075251 A090590
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 13 2017
STATUS
approved