%I #4 Feb 12 2017 06:56:09
%S 0,0,648,10680,182876,3025368,47432264,729388572,11019803902,
%T 164097425164,2416965310894,35276663185272,510981565581058,
%U 7354287754545148,105266234561871314,1499577829259932716
%N Number of nX4 0..1 arrays with no 1 equal to more than four of its king-move neighbors, with the exception of exactly one element.
%C Column 4 of A282338.
%H R. H. Hardin, <a href="/A282334/b282334.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 18*a(n-1) +5*a(n-2) -308*a(n-3) -6781*a(n-4) -16260*a(n-5) -5839*a(n-6) +381590*a(n-7) +898643*a(n-8) +683448*a(n-9) -7901476*a(n-10) -18267192*a(n-11) -15109744*a(n-12) +72131496*a(n-13) +165662796*a(n-14) +141453756*a(n-15) -287414972*a(n-16) -670528488*a(n-17) -598111024*a(n-18) +405239580*a(n-19) +1103153372*a(n-20) +968751048*a(n-21) -215171840*a(n-22) -841877704*a(n-23) -711708556*a(n-24) +10362176*a(n-25) +294105500*a(n-26) +237494040*a(n-27) +24813640*a(n-28) -34372240*a(n-29) -27106836*a(n-30) -5422128*a(n-31) -1521344*a(n-32) -807296*a(n-33) -76624*a(n-34) -9792*a(n-35) -5184*a(n-36)
%e Some solutions for n=4
%e ..1..0..1..0. .1..1..0..1. .0..1..0..1. .0..1..1..1. .0..0..0..0
%e ..0..1..0..1. .0..1..0..0. .1..1..0..0. .0..0..1..1. .0..0..1..1
%e ..1..0..1..0. .1..1..1..1. .1..1..1..1. .1..1..0..0. .1..1..1..1
%e ..1..1..1..1. .1..0..0..1. .0..0..0..1. .0..1..1..0. .0..1..0..0
%Y Cf. A282338.
%K nonn
%O 1,3
%A _R. H. Hardin_, Feb 12 2017