login
A282334
Number of nX4 0..1 arrays with no 1 equal to more than four of its king-move neighbors, with the exception of exactly one element.
1
0, 0, 648, 10680, 182876, 3025368, 47432264, 729388572, 11019803902, 164097425164, 2416965310894, 35276663185272, 510981565581058, 7354287754545148, 105266234561871314, 1499577829259932716
OFFSET
1,3
COMMENTS
Column 4 of A282338.
LINKS
FORMULA
Empirical: a(n) = 18*a(n-1) +5*a(n-2) -308*a(n-3) -6781*a(n-4) -16260*a(n-5) -5839*a(n-6) +381590*a(n-7) +898643*a(n-8) +683448*a(n-9) -7901476*a(n-10) -18267192*a(n-11) -15109744*a(n-12) +72131496*a(n-13) +165662796*a(n-14) +141453756*a(n-15) -287414972*a(n-16) -670528488*a(n-17) -598111024*a(n-18) +405239580*a(n-19) +1103153372*a(n-20) +968751048*a(n-21) -215171840*a(n-22) -841877704*a(n-23) -711708556*a(n-24) +10362176*a(n-25) +294105500*a(n-26) +237494040*a(n-27) +24813640*a(n-28) -34372240*a(n-29) -27106836*a(n-30) -5422128*a(n-31) -1521344*a(n-32) -807296*a(n-33) -76624*a(n-34) -9792*a(n-35) -5184*a(n-36)
EXAMPLE
Some solutions for n=4
..1..0..1..0. .1..1..0..1. .0..1..0..1. .0..1..1..1. .0..0..0..0
..0..1..0..1. .0..1..0..0. .1..1..0..0. .0..0..1..1. .0..0..1..1
..1..0..1..0. .1..1..1..1. .1..1..1..1. .1..1..0..0. .1..1..1..1
..1..1..1..1. .1..0..0..1. .0..0..0..1. .0..1..1..0. .0..1..0..0
CROSSREFS
Cf. A282338.
Sequence in context: A233677 A200938 A165611 * A034619 A185270 A250343
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 12 2017
STATUS
approved