login
A282333
Number of nX3 0..1 arrays with no 1 equal to more than four of its king-move neighbors, with the exception of exactly one element.
1
0, 0, 68, 648, 5794, 50800, 425030, 3471260, 27860736, 220428364, 1724451558, 13367432628, 102829430286, 785915641216, 5973479382128, 45184958497116, 340358998010594, 2554304948742584, 19106436625582946, 142498068564329104
OFFSET
1,3
COMMENTS
Column 3 of A282338.
LINKS
FORMULA
Empirical: a(n) = 10*a(n-1) -3*a(n-2) -48*a(n-3) -479*a(n-4) -572*a(n-5) +a(n-6) +4040*a(n-7) +5796*a(n-8) +2406*a(n-9) -13483*a(n-10) -20500*a(n-11) -10306*a(n-12) +19360*a(n-13) +30323*a(n-14) +16440*a(n-15) -8764*a(n-16) -15640*a(n-17) -9508*a(n-18) -2064*a(n-19) -144*a(n-20).
Empirical: G.f.: 2*x^3*(34 -16*x -241*x^2 -966*x^3 -956*x^4 +380*x^5 +3770*x^6 +4112*x^7 -133*x^8 -4904*x^9 -3941*x^10 -134*x^11 +1477*x^12 +732*x^13 +36*x^14) / (-1 +5*x +11*x^2 +31*x^3 -24*x^4 -65*x^5 -108*x^6 +21*x^7 +88*x^8 +86*x^9 +12*x^10)^2 . - R. J. Mathar, Feb 13 2017
EXAMPLE
Some solutions for n=4
..1..1..1. .1..1..1. .0..0..1. .1..0..1. .0..0..0. .0..0..0. .0..0..0
..0..1..1. .0..1..0. .0..1..1. .0..1..1. .0..0..1. .0..1..1. .1..0..1
..0..0..1. .0..1..1. .0..1..1. .0..1..1. .1..1..0. .1..1..0. .1..1..1
..1..0..1. .1..0..1. .1..0..1. .1..0..0. .1..1..1. .1..0..1. .0..1..0
CROSSREFS
Cf. A282338.
Sequence in context: A248467 A281565 A281883 * A244440 A166398 A200876
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 12 2017
STATUS
approved