%I #14 Feb 27 2018 02:57:56
%S 1,-288,-325728,11700864,35176468896,6601058210880,438061091013504,
%T 15173572442740992,327251435243536800,4913611331706352224,
%U 55439979246339307200,496425441863436557184,3672747479405396310912,23148319784349233726784
%N Coefficients in q-expansion of E_4^3*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
%H Seiichi Manyama, <a href="/A282332/b282332.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>
%t terms = 14;
%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t E4[x]^3*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^2).
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 12 2017