login
Coefficients in q-expansion of E_6^4, where E_6 is the Eisenstein series A013973.
3

%I #15 Feb 27 2018 02:57:48

%S 1,-2016,1457568,-411997824,16227967392,6497071680960,440015323483008,

%T 15172068869975808,327221898778968480,4913597307075535008,

%U 55440561879404210880,496424806634688962688,3672744471642078903168,23148319448757751932096

%N Coefficients in q-expansion of E_6^4, where E_6 is the Eisenstein series A013973.

%H Seiichi Manyama, <a href="/A282331/b282331.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>

%F E6(q)^4 = (1 - 504 Sum_{i>=1} sigma_5(i)q^i)^4 where sigma_5(n) is A001160.

%t terms = 14;

%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];

%t E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)

%Y Cf. A013973 (E_6), A280869 (E_6^2), A282253 (E_6^3), this sequence (E_6^4).

%Y Cf. A282210 (E_2^4), A282012 (E_4^4), this sequence (E_6^4).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 12 2017