login
Coefficients in q-expansion of E_4^6, where E_4 is the Eisenstein series A004009.
5

%I #15 Feb 27 2018 02:57:42

%S 1,1440,876960,292072320,57349833120,6660135541440,436536302762880,

%T 15172132360815360,327295477379498400,4913576699608450080,

%U 55439481453769056960,496426192564963006080,3672749219557161663360,23148323907214334109120

%N Coefficients in q-expansion of E_4^6, where E_4 is the Eisenstein series A004009.

%H Seiichi Manyama, <a href="/A282330/b282330.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>

%F G.f.: (1 + 240 Sum_{i>=1} i^3 q^i/(1-q^i))^6.

%t terms = 14;

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

%t E4[x]^6 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)

%Y Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), A282012 (E_4^4), A282015 (E_4^5), this sequence (E_4^6).

%K nonn

%O 0,2

%A _Seiichi Manyama_, Feb 12 2017