login
A282326
Greater of twin primes congruent to 1 (mod 30).
7
31, 61, 151, 181, 241, 271, 421, 571, 601, 661, 811, 1021, 1051, 1231, 1291, 1321, 1621, 1951, 2131, 2311, 2341, 2551, 2731, 2791, 2971, 3001, 3121, 3301, 3331, 3361, 3391, 3541, 3931, 4021, 4051, 4231, 4261, 4651, 4801, 5011, 5101, 5281, 5521, 5641, 5851
OFFSET
1,1
COMMENTS
The union of [A060229 and this sequence] is A132243.
The union of [{5, 7}, A282322, A282324 and this sequence] is the greater of twin primes sequence A006512.
The union of [{3, 5, 7}, A282321 to A060229 and this sequence] is the twin primes sequence A001097.
Number of terms less than 10^k, k=2,3,4,...: 2, 11, 72, 407, 2697, 19507, 146516, ... - Muniru A Asiru, Mar 05 2018
LINKS
MAPLE
select(n -> isprime(n-2) and isprime(n), [seq(30*k+1, k=0..300)]); # Muniru A Asiru, Mar 05 2018
MATHEMATICA
1 + Select[30 Range@ 200, AllTrue[# + {-1, 1}, PrimeQ] &] (* Michael De Vlieger, Mar 26 2018 *)
PROG
(PARI) list(lim)=my(v=List(), p=2); forprime(q=3, lim, if(q-p==2 && q%30==1, listput(v, q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
(GAP) Filtered(List([0..300], k -> 30*k+1), n -> IsPrime(n-2) and IsPrime(n)); # Muniru A Asiru, Mar 05 2018
KEYWORD
nonn
AUTHOR
Martin Renner, Feb 11 2017
STATUS
approved