login
A282316
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than four of its king-move neighbors.
8
2, 4, 4, 8, 16, 8, 16, 63, 63, 16, 32, 249, 419, 249, 32, 64, 984, 2968, 2968, 984, 64, 128, 3888, 21055, 40024, 21055, 3888, 128, 256, 15363, 148793, 535494, 535494, 148793, 15363, 256, 512, 60705, 1052672, 7114808, 13473987, 7114808, 1052672, 60705, 512
OFFSET
1,1
COMMENTS
Table starts
....2......4.........8...........16..............32................64
....4.....16........63..........249.............984..............3888
....8.....63.......419.........2968...........21055............148793
...16....249......2968........40024..........535494...........7114808
...32....984.....21055.......535494........13473987.........335154112
...64...3888....148793......7114808.......335154112.......15544631618
..128..15363...1052672.....94872444......8386104536......726938227646
..256..60705...7447859...1264480188....209686247202....33959500217027
..512.239868..52689903..16850046438...5240914986790..1585545530659659
.1024.947808.372763688.224565308124.131022200932324.74053519870574822
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +3*a(n-3)
k=3: [order 10]
k=4: [order 18]
k=5: [order 57]
EXAMPLE
Some solutions for n=4 k=4
..1..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..0..1..0. .0..0..1..0. .1..0..0..0. .1..0..0..0. .1..0..0..1
..1..0..1..1. .0..1..1..0. .1..0..1..1. .0..0..1..0. .1..1..0..1
..0..0..0..0. .1..0..1..1. .0..0..1..0. .1..1..0..1. .0..0..0..1
CROSSREFS
Column 1 is A000079.
Sequence in context: A283415 A283857 A227442 * A228986 A188910 A189111
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 11 2017
STATUS
approved