%I #18 Feb 23 2018 03:40:54
%S 1,-528,-201168,61114944,20946935856,1443146395680,46053422547264,
%T 861726789128832,10894843149545520,102119072037503664,
%U 755968133350219680,4623420033182073024,24151660069581371712,110516194189880866464,451789196756619249792
%N Coefficients in q-expansion of E_10^2, where E_10 is the Eisenstein series A013974.
%H Seiichi Manyama, <a href="/A282292/b282292.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>
%t terms = 15;
%t E10[x_] = 1 - 264*Sum[k^9*x^k/(1 - x^k), {k, 1, terms}];
%t E10[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 23 2018 *)
%Y Cf. A281374 (E_2^2), A008410 (E_4^2), A280869 (E_6^2), A282012 (E_8^2), this sequence (E_10^2).
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 11 2017