login
Coefficients in q-expansion of E_6^3, where E_6 is the Eisenstein series shown in A013973.
7

%I #15 Feb 26 2018 19:20:23

%S 1,-1512,712152,-78097824,-11474230824,-498089967984,-11088580243104,

%T -152351956669248,-1474676091461160,-10921529499813576,

%U -65490182325115632,-331010378444247264,-1452953351890984608,-5665062963045803184,-19968586384352171328

%N Coefficients in q-expansion of E_6^3, where E_6 is the Eisenstein series shown in A013973.

%H Seiichi Manyama, <a href="/A282253/b282253.txt">Table of n, a(n) for n = 0..1000</a>

%t terms = 15;

%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];

%t E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *)

%Y Cf. A282018 (E_2^3), A008411 (E_4^3), this sequence (E_6^3).

%Y Cf. A013973 (E_6), A280869 (E_6^2), this sequence (E_6^3).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 10 2017