login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282252 Exponential Riordan array [Bessel_I(0,2*x)^2, x]. 3
1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 36, 0, 24, 0, 1, 0, 180, 0, 40, 0, 1, 400, 0, 540, 0, 60, 0, 1, 0, 2800, 0, 1260, 0, 84, 0, 1, 4900, 0, 11200, 0, 2520, 0, 112, 0, 1, 0, 44100, 0, 33600, 0, 4536, 0, 144, 0, 1, 63504, 0, 220500, 0, 84000, 0, 7560, 0, 180, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Bessel_I(0,2*x) = Sum_{n >= 0} binomial(2*n,n)*x^(2*n)/(2*n)! is a modified Bessel function of the first kind.

Consider the infinite 2-dimensional square lattice Z x Z with an oriented self-loop at each vertex. Then the triangle entry T(n,k) equals the number of walks of length n from the origin to itself having k loops. An example is given below.

See A069466 for walks an infinite 2-dimensional square lattice without self-loops.

This is the square of triangle A109187, whose entries give the number of walks of length n from a vertex to itself having k loops on a 1-dimensional integer lattice with an oriented self-loop at each vertex.

A109187 is the exponential Riordan array [Bessel_I(0,2*x), x]. Note that Bessel_I(0,2*x)^2 = (Sum_{n >= 0} binomial(2*n,n)* x^(2*n)/(2*n)!)^2 = Sum_{n >= 0} binomial(2*n,n)^2*x^(2*n) /(2*n)!.

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

FORMULA

T(n,k) = binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2.

T(n,n-2*k) = n/(n - 2*k)*T(n-1,n-2*k-1).

T(n,k) = the coefficient of t^k in the expansion of (t + X + 1/X + Y + 1/Y)^n.

T(n,k) = 1/Pi^2 * Integral_{y = 0..Pi} Integral_{x = 0..Pi} ( t + 2*cos(x) + 2*cos(y) )^n dx dy.

E.g.f.: exp(x*t)*Bessel_I(0,2*x)^2 = 1 + t*x + (4 + t^2)*x^2/2! + (12*t + t^3)*x^3/3! + (36 + 24*t^2 + t^4)*x^4/4! + ....

The n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)^2 * t^(n-2*k).

Recurrence: n^2*R(n,t) = t*(3*n^2 - 3*n + 1)*R(n-1,t) + (16 - 3*t^2)*(n - 1)^2*R(n-2,t) + t*(t^2 - 16)*(n - 1)*(n - 2)*R(n-3,t) with R(0,t) = 1, R(1,t) = t and R(2,t) = 4 + t^2.

d/dt(R(n,t)) = n*R(n-1,t).

The zeros of the row polynomials appear to lie on the imaginary axis in the complex plane. Also, the zeros of R(n,t) and R(n+1,t) appear to interlace on the imaginary axis.

EXAMPLE

The triangle begins

    1;

    0,   1;

    4,   0,   1;

    0,  12,   0,   1;

   36,   0,  24,   0,   1;

    0, 180,   0,  40,   0,   1;

  400,   0, 540,   0,  60,   0,   1;

  ...

T(3,1) = 12: on the square lattice, let L, R, U, D denote a left step, right step, up step and down step respectively. The 12 walks of length 3 containing a single loop are

    loop L R, loop R L, loop U D, loop D U,

    L loop R, R loop L, U loop D, D loop U,

    L R loop, R L loop, U D loop, D U loop.

The infinitesimal generator of this array has integer entries and begins

      0;

      0,    0;

      4,    0,    0;

      0,   12,    0,    0;

    -12,    0,   24,    0,    0;

      0,  -60,    0,   40,    0,    0;

    160,    0, -180,    0,   60,    0,    0;

      0, 1120,    0, -420,    0,   84,    0,    0;

  -4620,    0, 4480,    0, -840,    0,  112,    0,    0;

  ...

It is the generalized exponential Riordan array [ 2*log(Bessel_I(0,2*x)), x ].

MAPLE

T := (n, k) -> (1/2)*binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k))^2*(1+(-1)^(n-k)):

seq(seq(T(n, k), k = 0..n), n = 0..9);

MATHEMATICA

Table[Binomial[n, k] Binomial[n - k, Floor[(n - k)/2]]^2*(1 + (-1)^(n - k))/2, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 12 2017 *)

PROG

(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*binomial(n-k, floor((n-k)/2))^2*(1 + (-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Aug 16 2017

CROSSREFS

A201805 gives row sums. Cf. A069466, A109187.

Sequence in context: A244530 A271424 A117435 * A268367 A117436 A136448

Adjacent sequences:  A282249 A282250 A282251 * A282253 A282254 A282255

KEYWORD

nonn,tabl,easy

AUTHOR

Peter Bala, Feb 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 15:43 EST 2017. Contains 295905 sequences.