This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282244 Lexicographic block-fractal zero-one word with initial block 01. 1
 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS To the initial block, 01, append the lexicographically ordered missing 2-letter words (00,10,11) to get 01001011.  To that, append the missing 3-letter words to get 01001011000110111.  To that, append the missing 4-letter words to get 010010110001101110000101011101111, etc.  In the limiting word, every finite binary word occurs infinitely many times; thus, the word (or sequence) is block-fractal, as defined at A280511. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 MATHEMATICA str = "01"; t = Table[str = str <> StringJoin[Map[#[[1]] &, Select[Map[{#, Length[StringPosition[str, #, 1]] > 0} &, Table[StringJoin[Map[ToString, IntegerDigits[n, 2, k]]], {n, 0, 2^k - 1}]], ! #[[2]] &]]], {k, 7}] ToExpression[Characters[Last[t]]]  (* _Peter J. C. Moses, Mar 11 2017 *) CROSSREFS Cf. A280511. Sequence in context: A260455 A189572 A287028 * A286691 A288462 A285411 Adjacent sequences:  A282241 A282242 A282243 * A282245 A282246 A282247 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 10:18 EDT 2018. Contains 301050 sequences. (Running on oeis4.)