login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282244 Lexicographic block-fractal zero-one word with initial block 01. 1
0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

To the intial block, 01, append the lexicographically ordered missing 2-letter words (00,10,11) to get 01001011.  To that, append the missing 3-letter words to get 01001011000110111.  To that, append the missing 4-letter words to get 010010110001101110000101011101111, etc.  In the limiting word, every finite binary word occurs infinitely many times; thus, the word (or sequence) is block-fractal, as defined at A280511.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

str = "01"; t = Table[str = str <> StringJoin[Map[#[[1]] &,

Select[Map[{#, Length[StringPosition[str, #, 1]] > 0} &,

Table[StringJoin[Map[ToString, IntegerDigits[n, 2, k]]], {n,

0, 2^k - 1}]], ! #[[2]] &]]], {k, 7}]

ToExpression[Characters[Last[t]]]  (* _Peter J. C. Moses, Mar 11 2017 *)

CROSSREFS

Cf. A280511.

Sequence in context: A260455 A189572 A287028 * A286691 A288462 A285411

Adjacent sequences:  A282241 A282242 A282243 * A282245 A282246 A282247

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 23:58 EDT 2017. Contains 290682 sequences.