%I #11 Feb 27 2018 02:57:19
%S 1,-96,3168,-34944,-107808,1955520,16829568,76708608,258593760,
%T 715480608,1729546560,3771497088,7581237888,14296261056,25520442624,
%U 43590539520,71582414304,113752634688,175604039136,264097115520,388619703360,559658001408,792716685696
%N Coefficients in q-expansion of E_2^4, where E_2 is the Eisenstein series shown in A006352.
%H Seiichi Manyama, <a href="/A282210/b282210.txt">Table of n, a(n) for n = 0..1000</a>
%t terms = 23;
%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t E2[x]^4 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y Cf. A006352 (E_2), A281374 (E_2^2), A282018 (E_2^3), this sequence (E_2^4).
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 09 2017