login
A282184
a(n) = A034699(a(n-1) + a(n-2) + a(n-3)) with a(0) = a(1) = a(2) = 1.
0
1, 1, 1, 3, 5, 9, 17, 31, 19, 67, 13, 11, 13, 37, 61, 37, 27, 125, 27, 179, 331, 179, 53, 563, 53, 223, 839, 223, 257, 1319, 257, 47, 541, 169, 757, 163, 121, 347, 631, 157, 227, 29, 59, 9, 97, 11, 13, 121, 29, 163, 313, 101, 577, 991, 1669, 83, 211, 151, 89, 41, 281, 137, 27, 89, 23, 139, 251, 59, 449, 23, 59, 59
OFFSET
0,4
COMMENTS
Sequence is cyclical, beginning with terms a(255)-a(257) = {19,13,43} with a period of 306 terms. - Michael De Vlieger, Feb 08 2017
EXAMPLE
a(5) = 9 because A034699(1 + 3 + 5) = A034699(9) = 9.
MATHEMATICA
a = {1, 1, 1}; Do[AppendTo[a, If[# == 1, 1, Max[Power @@@ FactorInteger@ #]] &@ Total@ {a[[i - 3]], a[[i - 2]], a[[i - 1]]}], {i, 4, 72}]; a (* Michael De Vlieger, Feb 08 2017 *)
PROG
(PARI) lappf(n) = my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]));
lista(nn) = {x = 1; y = 1; z = 1; print1(x, ", ", y, ", ", z, ", "); for (n=4, nn, t = lappf(x+y+z); print1(t, ", "); x = y; y = z; z = t; ); } \\ Michel Marcus, Feb 10 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Feb 08 2017
STATUS
approved