

A282159


T(n,k)=Number of nXk 0..2 arrays with no element unequal to more than four of its kingmove neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.


5



0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 82, 884, 82, 0, 0, 1599, 37560, 37560, 1599, 0, 0, 20256, 449234, 680348, 449234, 20256, 0, 0, 217361, 4930949, 12543514, 12543514, 4930949, 217361, 0, 0, 2130206, 45129433, 171142988, 268737946, 171142988, 45129433
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


COMMENTS

Table starts
.0.........0...........0............0.............0.............0.............0
.0.........0...........1...........82..........1599.........20256........217361
.0.........1.........884........37560........449234.......4930949......45129433
.0........82.......37560.......680348......12543514.....171142988....2215087379
.0......1599......449234.....12543514.....268737946....4498309134...70977696789
.0.....20256.....4930949....171142988....4498309134...94477496914.1871302754948
.0....217361....45129433...2215087379...70977696789.1871302754948
.0...2130206...390165523..26310131648.1027384373753
.0..19642211..3162500791.298319340360
.0.173364188.24713889390


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..83


FORMULA

Empirical for column k:
k=1: a(n) = a(n1)
k=2: [order 12]
k=3: [order 45] for n>49


EXAMPLE

Some solutions for n=3 k=4
..0..1..1..2. .0..0..0..1. .0..1..1..2. .0..1..2..2. .0..1..2..0
..1..1..2..1. .1..2..0..0. .1..0..0..0. .1..2..0..2. .0..2..1..2
..2..0..0..1. .0..2..2..0. .1..0..1..0. .1..1..0..1. .1..0..0..1


CROSSREFS

Sequence in context: A317700 A173356 A083386 * A263812 A160154 A093282
Adjacent sequences: A282156 A282157 A282158 * A282160 A282161 A282162


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Feb 07 2017


STATUS

approved



