login
A282141
a(n)=least number strictly greater than n with an equivalent prime tower factorization.
1
3, 5, 27, 7, 10, 11, 9, 25, 14, 13, 20, 17, 15, 21, 7625597484987, 19, 24, 23, 28, 22, 26, 29, 50, 32, 33, 3125, 44, 31, 42, 37, 49, 34, 35, 38, 100, 41, 39, 46, 45, 43, 66, 47, 52, 56, 51, 53, 80, 121, 98, 55, 54, 59, 68, 57, 63, 58, 62, 61, 84, 67, 65, 75
OFFSET
2,1
COMMENTS
The prime tower factorization of a number is defined in A182318.
The prime tower factorization equivalence classes are described in A279686.
For any n>1, a(n)=least k>n such that A279690(n)=A279690(k).
This sequence is a permutation of the complement of A279686.
This sequence is to prime tower factorization what A081761 is to prime signature.
FORMULA
a(A000040(n)) = A000040(n+1) for any n>0.
a(A006881(n)) = A006881(n+1) for any n>0.
a(A051674(n)) = A051674(n+1) for any n>0.
a(A007304(n)) = A007304(n+1) for any n>0.
a(A046386(n)) = A046386(n+1) for any n>0.
a(A046387(n)) = A046387(n+1) for any n>0.
a(A067885(n)) = A067885(n+1) for any n>0.
PROG
(PARI) a(n) = my (c=a279690(n)); my (k=n+1); while (c!=a279690(k), k++); k
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Feb 07 2017
STATUS
approved