login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282112 Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(i-j)*d_i} = Sum_{i=1..j-1}{(j-i)*d_i}. Case x = 7. 3
50, 57, 64, 71, 78, 85, 92, 100, 107, 114, 121, 128, 135, 142, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 221, 228, 235, 242, 250, 257, 264, 271, 278, 285, 292, 300, 307, 314, 321, 328, 335, 342, 345, 350, 352, 359, 366, 373, 380, 387, 395, 399, 402, 409 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All the palindromic numbers in base 7 with an odd number of digits belong to the sequence.

Here the fulcrum is one of the digits while in the sequence from A282143 to A282151 is between two digits.

Numbers with this property in all the bases from 2 to 7 are: 53060873, 55161152, 151009636, 343518281, 505587488, 513015908, ...- Giovanni Resta, Feb 13 2017

LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..10000

EXAMPLE

409 in base 7 is 1123. If j = 2 (digit 2) we have 1*1 + 1*2 = 3 for the left side and 3*1 = 3 for the right one.

MAPLE

P:=proc(n, h) local a, j, k: a:=convert(n, base, h):

for k from 1 to nops(a)-1 do

if add(a[j]*(k-j), j=1..k)=add(a[j]*(j-k), j=k+1..nops(a)) then

RETURN(n); break: fi: od: end: seq(P(i, 7), i=1..10^3);

CROSSREFS

Cf. A282107 - A282111, A282113 - A282115.

Sequence in context: A118146 A114504 A227548 * A172468 A046832 A046834

Adjacent sequences:  A282109 A282110 A282111 * A282113 A282114 A282115

KEYWORD

nonn,base,easy

AUTHOR

Paolo P. Lava, Feb 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:24 EDT 2020. Contains 337291 sequences. (Running on oeis4.)