%I
%S 10,13,16,20,23,26,29,30,32,35,39,48,55,60,64,69,73,78,82,87,90,91,96,
%T 100,105,112,117,121,130,137,142,144,146,151,155,160,164,165,169,173,
%U 178,180,182,187,192,194,203,207,212,219,224,233,234,242,246,247,256
%N Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(ij)*d_i} = Sum_{i=1..j1}{(ji)*d_i}. Case x = 3.
%C All the palindromic numbers in base 3 with an odd number of digits belong to the sequence.
%C Here the fulcrum is one of the digits while in the sequence from A282143 to A282151 is between two digits.
%H Paolo P. Lava, <a href="/A282108/b282108.txt">Table of n, a(n) for n = 1..10000</a>
%e 35 in base 3 is 1022. If j = 2 (second 2 from the right) we have 0*1 + 1*2 = 2 for the left side and 2*1 for the right one.
%p P:=proc(n,h) local a,j,k: a:=convert(n, base, h):
%p for k from 1 to nops(a)1 do
%p if add(a[j]*(kj),j=1..k)=add(a[j]*(jk),j=k+1..nops(a))
%p then RETURN(n); break: fi: od: end: seq(P(i,3),i=1..10^3);
%Y Cf. A282107, A282109  A282115.
%K base,nonn,easy
%O 1,1
%A _Paolo P. Lava_, Feb 06 2017
