

A282108


Numbers n with k digits in base x (MSD(n)=d_k, LSD(n)=d_1) such that, chosen one of their digits in position d_k < j < d_1, is Sum_{i=j+1..k}{(ij)*d_i} = Sum_{i=1..j1}{(ji)*d_i}. Case x = 3.


3



10, 13, 16, 20, 23, 26, 29, 30, 32, 35, 39, 48, 55, 60, 64, 69, 73, 78, 82, 87, 90, 91, 96, 100, 105, 112, 117, 121, 130, 137, 142, 144, 146, 151, 155, 160, 164, 165, 169, 173, 178, 180, 182, 187, 192, 194, 203, 207, 212, 219, 224, 233, 234, 242, 246, 247, 256
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All the palindromic numbers in base 3 with an odd number of digits belong to the sequence.
Here the fulcrum is one of the digits while in the sequence from A282143 to A282151 is between two digits.


LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..10000


EXAMPLE

35 in base 3 is 1022. If j = 2 (second 2 from the right) we have 0*1 + 1*2 = 2 for the left side and 2*1 for the right one.


MAPLE

P:=proc(n, h) local a, j, k: a:=convert(n, base, h):
for k from 1 to nops(a)1 do
if add(a[j]*(kj), j=1..k)=add(a[j]*(jk), j=k+1..nops(a))
then RETURN(n); break: fi: od: end: seq(P(i, 3), i=1..10^3);


CROSSREFS

Cf. A282107, A282109  A282115.
Sequence in context: A309304 A153045 A055984 * A306035 A335016 A240109
Adjacent sequences: A282105 A282106 A282107 * A282109 A282110 A282111


KEYWORD

base,nonn,easy


AUTHOR

Paolo P. Lava, Feb 06 2017


STATUS

approved



