%I #15 Feb 26 2018 17:23:55
%S 1,-528,-4608,312384,3664416,21745440,86782464,276703872,741794400,
%T 1758969264,3797729280,7568097984,14222957952,25253852064,43166426112,
%U 70518360960,112406614752,172631876832,260795119104,381636168000,552633117120,778105665024
%N Coefficients in q-expansion of E_2*E_6, where E_2, E_6 are the Eisenstein series shown in A006352, A013973, respectively.
%H Seiichi Manyama, <a href="/A282096/b282096.txt">Table of n, a(n) for n = 0..1000</a>
%t terms = 22;
%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t E2[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 26 2018 *)
%Y Cf. A006352 (E_2), A013973 (E_6).
%Y Cf. A281374 (E_2^2), A282019 (E_2*E_4), this sequence (E_2*E_6), A282101 (E_2*E_8), A282102 (E_2*E_10).
%K sign
%O 0,2
%A _Seiichi Manyama_, Feb 06 2017