login
A282060
Coefficients in q-expansion of E_4*(E_2*E_4 - E_6)/720, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
8
0, 1, 258, 6564, 66052, 390630, 1693512, 5764808, 16909320, 43066413, 100782540, 214358892, 433565328, 815730734, 1487320464, 2564095320, 4328785936, 6975757458, 11111134554, 16983563060, 25801892760, 37840199712, 55304594136, 78310985304, 110992776480
OFFSET
0,3
COMMENTS
Multiplicative because A013955 is. - Andrew Howroyd, Jul 25 2018
LINKS
FORMULA
G.f.: phi_{8, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A282101(n) - A013974(n))/720. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^8 + p = A196288(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A013955(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(8) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-8). (End)
EXAMPLE
a(6) = 1^8*6^1 + 2^8*3^1 + 3^8*2^1 + 6^8*1^1 = 1693512.
MATHEMATICA
terms = 25;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]*(E2[x]*E4[x] - E6[x])/720 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Table[n * DivisorSigma[7, n], {n, 0, 24}] (* Amiram Eldar, Sep 06 2023 *)
PROG
(PARI) a(n) = if(n < 1, 0, n*sigma(n, 7)) \\ Andrew Howroyd, Jul 25 2018
CROSSREFS
Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}, this sequence (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282101 (E_2*E_4^2), A013974 (E_4*E_6 = E_10).
Sequence in context: A158230 A209945 A233306 * A301546 A229330 A253636
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Feb 05 2017
STATUS
approved