login
A282046
From solution to a certain functional equation.
1
1, 6, 66, 852, 11874, 172860, 2586108, 39403704, 608191266, 9477587436, 148782847572, 2349371691528, 37276209494076, 593819849120712, 9492182832078888, 152184075600182352, 2446292788927524258, 39414680294672271756, 636376864032528135204, 10294159197891381551208
OFFSET
0,2
LINKS
Shaun Cooper, Jesús Guillera, Armin Straub, Wadim Zudilin, Crouching AGM, Hidden Modularity, arXiv:1604.01106 [math.NT], 5-April-2016. See Section 2.
MATHEMATICA
terms = 20;
f[_] = 1;
Do[f[z_] = f[z] - f[z/(1+2z)^3]/(1+2z)^2 + f[z^2/(1-4z)^3]/(1-4z)^2 + O[z]^terms // Normal, {terms}];
g[z_] = Sqrt[f[z]] + O[z]^terms;
CoefficientList[g[z], z] (* Jean-François Alcover, Oct 10 2018, after Andrey Zabolotskiy *)
PROG
(Python)
fact = [1]
for i in range(1, 80):
fact.append(fact[-1]*i)
def cnk(n, k):
return fact[n]//fact[k]//fact[n-k]
def cc(N): # returns first N terms of A282045
c = [1]
for n in range(1, N):
c.append(sum(cnk(n+k+1, 3*k+1)*4**(n-2*k)*c[k] for k in range(n//2+1)) - sum(cnk(n+2*k+1, 3*k+1)*(-2)**(n-k)*c[k] for k in range(n)))
return c
def dd(ccc):
d = [1]
for n in range(1, len(ccc)):
d.append((ccc[n]-sum(d[k]*d[n-k] for k in range(1, n)))//2)
return d
print(dd(cc(25)))
# Andrey Zabolotskiy, Feb 22 2017
CROSSREFS
Cf. A282045.
Sequence in context: A173535 A267141 A004355 * A124862 A130977 A191096
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 21 2017
EXTENSIONS
More terms from Andrey Zabolotskiy, Feb 22 2017
STATUS
approved